
一、基本信息
姓????名:徐文君??????????????????
性????別:女?????????????????????????
籍????貫:山東青島????????????????
出生年月:1981年11月????????????????????
畢業(yè)院校:同濟(jì)大學(xué)????????????????????????????????????????????????????
學(xué)歷學(xué)位:研究生/博士???????????????????
技術(shù)職務(wù):研究員????????????????
導(dǎo)師類別:碩導(dǎo)?????????????????
工作部門:中國科學(xué)院上海技術(shù)物理研究所?工程三室??
電子郵箱:Xuwenjun@mail.sitp.ac.cn??????????????????????????
?二、工作簡歷
2020年4月至今? ? ?中國科學(xué)院上海技術(shù)物理研究所。
2015年10月至2020年4月? 同濟(jì)大學(xué) 數(shù)學(xué)系博士后。研究方向?yàn)椋旱卣鸩ǚ磫栴}研究。
期間:(2016年8月至2019年8月? ?美國加州大學(xué)(圣克魯斯分校) Visiting Scholar.?主要研究方向?yàn)椋?. 波動(dòng)方程中的擬微分算子特性研究,包括對稱性、互易性以及單程波傳播算子的保振幅特性;2. 曲線坐標(biāo)系下的Radon變換及其在非規(guī)則自由表面波場正演的應(yīng)用。合作導(dǎo)師:RU-Shan Wu (歐洲科學(xué)院院士))
三、科研工作簡介
????2014年獲得美國加州大學(xué)圣克魯斯分校與同濟(jì)大學(xué)地球物理學(xué)聯(lián)合博士學(xué)位,2015-2019年同濟(jì)大學(xué)應(yīng)用數(shù)學(xué)博士后,加州大學(xué)圣克魯斯分校訪問學(xué)者(2016.08-2019.08)。主要研究方向?yàn)榭臻g紅外探測與感知,致力于AI for Infrared complex sciences以及復(fù)雜背景紅外弱動(dòng)態(tài)目標(biāo)探測技術(shù)與方法研究。主持國家級項(xiàng)目6項(xiàng),省部級項(xiàng)目3項(xiàng),在Remote Sensing, Geophysics, and Geophysical Journal International等專業(yè)頂刊發(fā)表論文多篇。
四、主要獲獎(jiǎng)成果
2025年? 中國通信藍(lán)海論壇最佳論文
2024年 ?中國發(fā)明協(xié)會(huì)——發(fā)明創(chuàng)新獎(jiǎng), 二等獎(jiǎng);
2024年??ESIT國際光學(xué)會(huì)議,最佳Poster,排名3;
2020、2022、2023年分別獲得省部級人才稱號。
五、代表性論文專利
[1]Zhong Wang, Shengli,Sun, Wenjun Xu, R.Chen, Y. Ma and G. Liu, Research on Multiscale Atmospheric Chaos Based on Infrared Remote-Sensing and Reanalysis Data, Remote Sensing, 2024, SCI. (2024年Remote Sensing雜志Notable Article.)
[2]徐文君,孫勝利*,劉高睿*. 大氣介質(zhì)紅外輻射場混沌與分形特征. 紅外與毫米波學(xué)報(bào),2024,SCI. (2024年度期刊優(yōu)秀論文)
[3]Xie, H., Xue, T., Xu, W., Liu, G., Sun., H., Sun*, S., Orbital Uncertainty Propagation Based on Adaptive Gaussian Mixture Model under Generalized Equinoctial Orbital Elements, Remote Sensing, 2023. (SCI)
[4]孫勝利,徐文君*,周浚輝,王眾,謝輝. “黑天鵝”事件的高靈敏多維探測與復(fù)雜性認(rèn)知. 遙感學(xué)報(bào), 2023年(智天論壇——衛(wèi)星信息智能處理與應(yīng)用技術(shù)???/p>
[5]馮波, 徐文君, 蔡杰雄, 吳如山, 王華忠. 標(biāo)量聲波方程前向散射場的保相位理論及其線性化近似. 物理學(xué)報(bào),2023, doi: 10.7498/aps.72.20230194. (SCI)
[6]Xie, H., Sun, S., Xue, T., Xu, W., Liu, H., Lei, L., Zhang, Y., A multimodal differential evolution algorithm in intial orbit determination for space-based too short arc, Remote Sensing, 2022. (SCI)
[7]Feng, B.; Xu, W.*; Wu, R. S.; Xie, X. B.; Wang, H.; Finite-frequency traveltime tomography using the Generalized Rytov approximation , Geophysical Journal International, 2020, 221(2): 1412-1426. (SCI)
[8]Feng, Bo; Xu, W.*; Luo, Fei; Wang, Huazhong; Rytov-approximation-based wave-equation traveltime tomography , Geophysics, 2020, 85(3):R289-R297. (SCI)
[9]Xu, W., Feng, B., Wang, H., et al, 2019, Data-driven seismic signal characterization, 81st EAGE, Conference and Exhibition, We R06 05. (EI)
[10]Feng, B., Xu, W., Wu, R.S. et al, 2019, Generalized Rytov approximation and its application in finite-frequency tomography, SEG Abstract, 5040-5044. (EI)
[11]Xu, W., Feng, B., Wu, R.S. et al, 2019, Finite-frequency tomography using the generalized Rytov approximation, SEG Abstract, 1445-1449. (EI)
Xu, W., Xie, X.B. and Geng, J. 2015, Validity of the Rytov approximation in the form of finite-frequency sensitivity kernel, Pure and Applied Geophysics, DOI: 10.1007/s00024-014-0991-8. (SCI)
附件下載: